§ 2. Синергетика и термодинамика

 

Одним из основных «корней», из которых произрастает синергетика, является термодинамика – наука о тепловых процессах. В составе современной термодинамики выделяют более ранние и классические разделы, получившие название «равновесная термодинамика», и более поздние и неклассические ее разделы, называемые обычно «неравновесной термодинамикой». Рассмотрим вкратце основные идеи этих направлений термодинамики для лучшего понимания того, что представляет из себя синергетика.

В равновесной термодинамике основным является понятие термодинамического равновесия, т.е. такого состояния термодинамической системы, при котором она не обменивается материей и энергией с окружающей средой (такая система называется изолированной) и не меняется во времени (такая система называется стационарной). Равновесная термодинамика базируется на трех основных законах. 1-й закон – это закон сохранения энергии, 2-й закон – закон неубывания энтропии в изолированной системе, и 3-й закон – закон недостижимости абсолютного нуля температур.

В неравновесной термодинамике рассматриваются процессы, в той или иной мере отклоняющиеся от термодинамического равновесия. В линейной неравновесной термодинамике такое отклонение еще невелико, что выражается в так называемом принципе локального равновесия, при котором термодинамическое равновесие сохраняется в достаточно малых частях системы. В этом случае термодинамические процессы могут быть описаны в форме линейных зависимостей присутствующих в системе потоков вещества или энергии от различных термодинамических сил, вызывающих эти потоки. Например, поток тепла вызывается силой, определяемой перепадом температур, поток вещества – перепадом концентраций в системе, и т.д. В работах Онсагера и Пригожина была сформулирована идея некоторой величины, получившей название «производство энтропии», к минимизации которой стремится стационарная термодинамическая система в случае небольших отклонений от состояния равновесия. Производство энтропии – это величина скорости изменения энтропии, так что стационарная система стремится минимизировать скорость изменения энтропии, максимально приближаясь в этом к состоянию термодинамического равновесия, когда производство энтропии равно нулю. Более того, стационарное состояние с минимумом производства энтропии оказывается термодинамически устойчивым состоянием, т.е. происходит погашение малых отклонений (флуктуаций), удаляющих систему от этого состояния.

В нелинейной неравновесной термодинамике отклонение от состояния равновесия может быть достаточно значительным. Здесь уже нельзя пользоваться линейными соотношениями между потоками и силами, перестает выполняться принцип локального равновесия. Неравновесие присуще не только системе в целом, оно проникает и на уровень малых частей системы. Тем не менее, было обнаружено, что как раз в такого рода далеко отстоящих от равновесия состояниях спонтанно возникают различные упорядоченные структуры, которые способны поддерживать свое состояние только в высоконеравновесных условиях. Такие структуры были названы «диссипативными структурами»:  это «структуры в открытых системах, в которых в ходе неравновесного процесса из пространственно-однородного состояния самопроизвольно (спонтанно) возникает пространственная или временная структура» [25] . В таких системах обычно локально энтропия уменьшается, хотя глобально считается, что она по-прежнему растет.

В нелинейной неравновесной термодинамике существует ряд типичных примеров возникновения и существования диссипативных структур. Это:

1) переход ламинарного («спокойного») течения жидкости в турбулентное («вихревое»). Хотя внешне кажется, что турбулентное движение представляет из себя потерю всякой упорядоченности, на деле оказывается, что здесь обнаруживается более сложный порядок.

2) возникновение «ячеек Бернара». Если поставить на огонь сковородку с налитым в нее минеральным маслом, то при определенной температуре в масле возникнут красивые гексагональные ячейки, вызванные конвенцией масла между более горячим и менее плотным нижним слоем и более холодным и плотным верхним слоем масла.

3) возникновение когерентного излучения в лазере, когда, после первоначального хаотического излучения и начиная с некоторой мощности накачки, атомы вещества начинают излучать фотоны одной фазы, что выражается в возникновении мощного пучка лазерного излучения.

4) реакция Белоусова-Жаботинского, выражающаяся в красивой пространственной организации химических реакций, которая особенно заметна при окрашивании среды в различные цвета, в зависимости от состава реагирующих компонентов.

5) модель «хищник - жертва», описывающая периодические процессы зависящих друг от друга численностей популяций двух биологических видов, один из которых выступает как хищник, другой – как его жертва. Нарастание численности хищников приводит к последующему падению численности жертвы, что затем сказывается в падении численности хищника, что впоследствии позволяет размножиться жертве, что, в свою очередь, влечет увеличение численности хищника, который уменьшает численность жертвы…, и так далее, процесс начинает циклично повторяться.

На последнем примере мы видим, что нелинейная неравновесная термодинамика начинает порождать некоторые общие методы рассмотрения процессов самоорганизации, которые выходят за границы только тепловых процессов. Еще более ясно это видно в математическом аппарате синергетики – теории катастроф.

Сайт управляется системой uCoz